
NASA Ames Automated Software Engineering

Using Model Checking to
Validate AI Planner

Domain Models
John Penix, Charles Pecheur

and Klaus Havelund
Automated Software Engineering

NASA Ames Research Center

NASA Ames Automated Software Engineering

The Problem: High-Assurance
Autonomous Systems

_ Long lifetimes
_ Limited Access
_ Reactive/Adaptive
_ Agent-Based

Architectures
_ Advanced

Algorithms
_ Knowledge-Based

NASA Ames Automated Software Engineering

Verification and Validation of
Autonomous Planning Systems

_ Our approach is to separate
algorithm verification from
domain model validation

Domain
Model

Planning
Algorithm

Autonomous Planner
Domain Engineers

Computer Scientists

NASA Ames Automated Software Engineering

Model Checking

_ Technique for verification of finite-state
systems - traditionally used for hardware

_ Determines whether a FSM is a “model” of a
temporal logic formula

_ Exhaustive - evaluates all possible executions
of events in the system

_ Allows non-deterministic modeling/abstraction
of the “environment”

_ Limited by “state space explosion”

NASA Ames Automated Software Engineering

Model Checking vs. Planning

_ Exhaustive model checking algorithms can
find flaws in domain models that may not be
discovered by testing with a heuristic planner

Initial State

Hazard State

Goal State
The planner may find
a path to the goal
without discovering
the hazard state.
Model checking tries
all paths and finds
the hazard state.

NASA Ames Automated Software Engineering

The HSTS Planner’s
Domain Description Language

_ Object-oriented data structures with qualitative
and quantitative constraints on variable values

Robot
 :state variables
At: {A,B,C}
Task: {Move,Fix,Rest}
Charge: {Empty,Full}

Hole
 :state variables
At: {A,B,C}
Status: {Exists,Fixed}

((Robot.Task=Fix) starts_before (10 20) (Hole.Status = Fixed))

NASA Ames Automated Software Engineering

Model Checking for DDL

_ Spin (from Bell Labs)

_ Murphi (from Stanford University)
_ SMV (from Carnegie Mellon University)

_ We developed a translation from a DDL model
to a finite state transition model

_ Tested the translation on 3 model checkers:

NASA Ames Automated Software Engineering

Results: Expressibility

_ General translation to finite state transition
model able to express qualitative constraints
with temporal locality

_ No support for quantitative constraints

_ Temporally distant relationships require
special consideration:

_ history variables in Spin & Murphi

_ fairness constraints in SMV

NASA Ames Automated Software Engineering

Results: Performance

_ Experimented on “small” model of autonomous
robot with 65 temporal constraints

_ The model had 16320 reachable states out of
559872 potential states (highly constrained)

_ Exhaustive verification with Spin & Murphi in
under 30 seconds

_ Exhaustive verification with SMV in 0.05
seconds (due to better target language)

NASA Ames Automated Software Engineering

Results: Capabilities

_ Model checking “error traces” are plans

_ Able to perform analysis that are not directly
supported by testing with the planner:

_ Is there a plan (a path from an initial state
to a goal state) for any legal initial state?

_ Is there a plan for every legal initial state?
_ Is there a plan from every reachable state?

_ Can I reach a state where X is true?

NASA Ames Automated Software Engineering

Conclusions

_ Model checking has the potential to overcome
limits to model validation using a planner

_ Model checking can be used to effectively
validate “simple” domain models

_ Further experiments are necessary to see if
temporally distant relations and quantitative
constraints can be effectively supported

